⏫Как ускорить вычисления с массивами с помощью NumExpr
NumExpr — мощный инструмент для ускорения вычислений с массивами в Python, который может значительно повысить производительность при работе с большими данными и сложными математическими выражениями.
Преобразовать медленный цикл, который занимал 650 мс, в вычисление за 60 мс — это реальность с использованием NumExpr.
Вот как NumExpr ускоряет вычисления🔽
1️⃣Частичное выполнение в кэше
NumExpr избегает создания огромных временных массивов, разбивая их на части, соответствующие размеру кэша.
Эти части обрабатываются и передаются через легковесную виртуальную машину, что ускоряет выполнение и оптимизирует доступ к памяти.
2️⃣Ускорение с помощью SIMD и VML
Использование инструкций SIMD (Single Instruction, Multiple Data) позволяет обрабатывать несколько элементов данных одновременно.
При доступности NumExpr использует библиотеку Intel Math Kernel Library (MKL) для трансцендентных функций (таких как sin(), cos(), exp()), что значительно повышает производительность.
3️⃣Поддержка многозадачного масштабирования
NumExpr автоматически распределяет вычисления между всеми ядрами процессора. Это позволяет эффективно использовать мощности многозадачности, ускоряя вычисления даже при больших данных.
Для работы с NumExpr достаточно заменить стандартные операции NumPy на аналоги NumExpr:
import numexpr as ne import numpy as np
# Пример массивов a = np.random.random(1000000) b = np.random.random(1000000)
# Обычная операция NumPy result = np.sin(a) + np.cos(b)
⏫Как ускорить вычисления с массивами с помощью NumExpr
NumExpr — мощный инструмент для ускорения вычислений с массивами в Python, который может значительно повысить производительность при работе с большими данными и сложными математическими выражениями.
Преобразовать медленный цикл, который занимал 650 мс, в вычисление за 60 мс — это реальность с использованием NumExpr.
Вот как NumExpr ускоряет вычисления🔽
1️⃣Частичное выполнение в кэше
NumExpr избегает создания огромных временных массивов, разбивая их на части, соответствующие размеру кэша.
Эти части обрабатываются и передаются через легковесную виртуальную машину, что ускоряет выполнение и оптимизирует доступ к памяти.
2️⃣Ускорение с помощью SIMD и VML
Использование инструкций SIMD (Single Instruction, Multiple Data) позволяет обрабатывать несколько элементов данных одновременно.
При доступности NumExpr использует библиотеку Intel Math Kernel Library (MKL) для трансцендентных функций (таких как sin(), cos(), exp()), что значительно повышает производительность.
3️⃣Поддержка многозадачного масштабирования
NumExpr автоматически распределяет вычисления между всеми ядрами процессора. Это позволяет эффективно использовать мощности многозадачности, ускоряя вычисления даже при больших данных.
Для работы с NumExpr достаточно заменить стандартные операции NumPy на аналоги NumExpr:
import numexpr as ne import numpy as np
# Пример массивов a = np.random.random(1000000) b = np.random.random(1000000)
# Обычная операция NumPy result = np.sin(a) + np.cos(b)
Like a stock, you can buy and hold Bitcoin as an investment. You can even now do so in special retirement accounts called Bitcoin IRAs. No matter where you choose to hold your Bitcoin, people’s philosophies on how to invest it vary: Some buy and hold long term, some buy and aim to sell after a price rally, and others bet on its price decreasing. Bitcoin’s price over time has experienced big price swings, going as low as $5,165 and as high as $28,990 in 2020 alone. “I think in some places, people might be using Bitcoin to pay for things, but the truth is that it’s an asset that looks like it’s going to be increasing in value relatively quickly for some time,” Marquez says. “So why would you sell something that’s going to be worth so much more next year than it is today? The majority of people that hold it are long-term investors.”
Unlimited members in Telegram group now
Telegram has made it easier for its users to communicate, as it has introduced a feature that allows more than 200,000 users in a group chat. However, if the users in a group chat move past 200,000, it changes into "Broadcast Group", but the feature comes with a restriction. Groups with close to 200k members can be converted to a Broadcast Group that allows unlimited members. Only admins can post in Broadcast Groups, but everyone can read along and participate in group Voice Chats," Telegram added.
Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from sg